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A method for incorporating systematic errors into branching ratio limits which are not obtained
from a simple counting analysis has been suggested by Mark Convery [1]. The derivation makes some
approximations which are not necessarily valid. This note presents the full solution as an alternative.
The basic idea is a simple extension of the Cousins and Highland philosophy [2]. Before systematics are
considered, an analysis using a maximum likelihood fit returns a central value for the branching ratio (B̂)
and a statistical error (σB). The likelihood function is

p(B) ∝ exp
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(1)

Following the notation in Convery, we associate Ŝ with the nominal efficiency and σS as the error on the
efficiency. Adding the uncertainty on the efficiency changes the likelihood to:
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From Mathematica®, the integral in Eq. 2 is:
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Ŝ2
+ σ2

B

)



















erf









Ŝ
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Removing unimportant multiplicative constants and changing variables from σS to σε ≡ σS/Ŝ gives:
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(3)
It turns out that as long as the efficiency Ŝ is sufficiently small (generally less than 10% but dependent on
other parameters), the second erf term evaluates to −1 and the dependence on the efficiency is removed.
The solution to the integral presented by Convery (for σS � Ŝ) can be written as:
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(4)

The differences between Eq. 4 and Eq. 3 are the two erf terms in Eq. 3. The first erf term affects
the tails of the distribution and becomes increasingly important as σε increases. The second erf term
affects the peak position and is important when Ŝ ± σS is not easily contained in the region {0, 1}. Or,
for a fixed σε, when Ŝ approaches unity. Next we compare the two results after modifying Equations 4
and 3 to normalize them such that p(B = B̂) = 1.
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Figure 1: Each plot shows a comparison of the approximate solution given by Eq. 4 in black to the full
solution given by Eq. 3 in red. For all plots, σB = 0.5, σε = 0.4, and Ŝ = ε = 0.1. The three plots show
results for B̂ = 0.5, B̂ = −0.5, and B̂ = −1.5.
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Figure 2: Each plot shows a comparison of the approximate solution given by Eq. 4 in black to the full
solution given by Eq. 3 in red. For all plots, σB = 0.5, B̂ = −1.5, and Ŝ = ε = 0.1. The three plots show
results for σε = 0.3, σε = 0.4, and σε = 0.5. In this case, the full solution is indistinguishable from the
full solution with the second erf term replaced by −1.

First we check the effect for relatively large σε and small Ŝ for which the first erf term becomes
important. Each plot of Figure 1 shows a comparison between the full solution in red and the approximate
solution in black. There is very little discernible difference between the two solutions. The different plots
show results for B̂ = 0.5, B̂ = −0.5, and B̂ = −1.5. To set an upper limit, one often integrates the
probability over the physical region only (B > 0). Figure 2 shows the results for p(B) over the range
B ∈ {0, 17} for the case of B̂ = −1.5 and σB = 0.5 which corresponds to a 3σ negative fluctuation. In this
case clear differences between the full solution (in red) and the approximate solution (black) can be seen
for σε ≥ 0.3. Note that Fig. 1(a) and Fig. 2(b) show the same curves, only the range has changed. Clearly
an attempt to find an upper limit by integrating the area under the approximate solution is problematic
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for all the cases shown in Fig. 2. Conversely, the full solution finds an acceptable upper limit.
Second we check the effect of the second erf term of Eq. 3 which is important when the integration

of efficiency from 0 to 1 in Eq. 2 cuts off a significant part of the Gaussian defined by Ŝ ± σS = Ŝ ± σεŜ.
Figure 3(a) is a repeat of Fig. 1(a) on a different scale and again shows little difference between the two
methods. Figures 3(b) and 3(c) show the effect of the second erf term as Ŝ → 1.
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Figure 3: Each plot shows a comparison of the approximate solution given by Eq. 4 in black to the full
solution given by Eq. 3 in red. For all plots, σB = 0.5, B̂ = 0.5, and σε = 0.4. The three plots show results
for Ŝ = ε = 0.1, Ŝ = ε = 0.8, and Ŝ = ε = 0.9. In this case, the full solution is nearly indistinguishable
from the full solution with the first erf term replaced by +1.
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